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Abstract

Above inciden_energies of about 2eV, the contribution to the total cross section in e+H2 scattering from the

gg symrnet-ry_is insufficient to account for the experimental value. We describe caiculat_i0_ns we ha_ve carried out of
the lowest partial waves of Eu+ symmetry and II u symmetry using the Kohn variational method. The contributions
to the total cross section from the two equivalent partial waves of Flu symmetry significantly reduce the discrepancy

with experiment up to incident energies of 4-5 eV. Comparisions are made with recent R'matrix calculations per-

formed by Danby and Tennyson 1.

Introduction

For incident energies up to about 2eV, the contribution to the total cross section in e+H2 scattering from the

+ symmetry is sufficient to account for the experimental value provided Hylleraas-typelowest partial wave of Zg
functions, containing the positron-electron distance as a linear factor, are included in the Kohn trial function 2. The

÷ symmetry is the analogue of the s-wave in positron or electron-atom scattering. The nextlowest partial wave of Zg
symmetries from which significant contributions may be expected as the energy increases above 2eV are the E_ and

FIu symmetries. The lowest partial waves of these symmetries are the analogue of the p-wave in positron or
electron-atom scattering. The decrease in symmetry in changing from an atomic target such as H or He to H 2 splits

the p-wave between the two symmetries: the m = 0 component is included in the _ symmetry, whereas the

m = + 1 component is included in the F1, symmetry. .....

The asymptotic effective potential between the target hydrogen molecule and an incident positron is of the

form

QP2(cos 0) a 0 a2P2(cos O) (1)
V(r) r_** r3 2r 4 2r 4

r and O are spherical coordinates of the positron measured from the nuclear centre of mass, with the z-axis along

the nuclear axis. Q is the quadrupole moment of the hydrogen molecule. The first term in (1) is the asymptotic
form of the static potential, first order in the interaction between the positron and the target. The other terms are of

second order, a o and G 2 are respectively the spherical and non-spherical dipole polarisabilities of the hydrogen

molecule, and are linear combinations of all and aj., the dipole polarisabilities parallel and perpendicular to the

nuclear axis. In second order perturbation theory, the expressions for all and at are made up of contributions from
virtual excitations to states of left and Flu electronic symmetry respectively 3.

The Z + partial wave trial function used in reference 2 did not include functions with the ¢o_ect asymptotic
form to dea_ with the long-range polarisation of the molecule. However, there is evidence from Kohn calculations

of e+H and e+He scattering that short-range exponentially decaying trial functions are adequate in the case of the

s-wave except in the vicinity of zero energy 4'5. It is reasonable to expect that th_s will be the case for Kohn

calculations of the lowest partial wave of Y.g symmetry in e+H2 scattering. There is no centrifugal barrier 6 and the

phase shift is determined by the positron-molecule interaction at all separations and not just when the positron is

far from the molecule.

This is not the case for higher partial waves which experience centrifugal barriers. For sufficiently low

incident energies long-range behaviour dominates and the phase shifts for these partial waves may be obtained from
the first Born approximation 7 using the asymptotic potential (1). Armour and Plummer s show for e+H2 scattering

that the correct behaviour of the phase shifts at very low energies follows naturally from the Kohn equations if the

trial function includes long-range polarisation functions of the correct form.

Several authors 5'9't° have reported poor convergence of p-wave phase Shifts at low incident energies

(incident wave number k = 0.1 ao-t ,0.2ao l) in Kohn calculations of e+H and e+He scattering that did not include

long-range polarisation functions in the trial function. Armour 11 found similar behaviour at low energies in a Kohn



calculationof thelowestpartialwaveof 5_:.+symmetryine+H2scatteringthattooknoaccountof long-rangepolari-
sation.Thetrial functionsforthepresentcalculationsof thelowestpartialwavesof Eu+ andFlu symmetriesinclude

+ 4-

long-range polarisation functions, separable correlation functions of Zg, Z u , 1-Iu and I-Ig electronic symmetries, and
Hylleraas-type functions, important at higher energies (k > 0.1 at 1) for taking into account short-range interactions

between the positron and the target electrons.

The Calculations

The calculations are extensions of the earlier calculations 2'11. Prolate spheroidal coordinates are employed in

the fixed nuclei model and the open channel functions are made up of solutions to the free-particle equation in this

coordinate system appropriate to the lowest partial waves of 2:ff symmetry and I-Iu symmetry, respectively. With
tP"G the model H 2 ground-state wave function, the correlation functions are of the form

..._a_ b, c. d

/V(AI 'A2 ']At'.//2 '[MlCOS(01 - 03 )] p' [M1 cos 01 ]q'r_3

+2_'2('l.t_'t.ta'[M2cos(C)2-O3)]P'[M2coso2]q'r_'3)e-#(z'+z')f,.(3)_G. (2)

Coordinates 1 and 2 represent the electrons and coordinates 3 represent the positron, and

2_'12_' e-°a3Mff '[M 3 cos 03 ] u, (separable and Hylleraas functions),

3_(3) = / cosSinc)'30r23c23} )[ ]"(1 e-r(x3- t)_,, o,-p,[M3 p' M3 cos 03 (polarisation functions).
- , -3 __3 23

M i = [(2 2- 1)(1-/12)1½

ai: bi, Ci, di, Pi, qi, ri, si, ti, ui, vi and w i are non-negative integers and a, fl: y and N are constants, c = ½kR,

with R the nuclear separation, r13 is the separation between electron 1 and the positron.

For overall Z + symmetry, ci+di+s i is odd and qi = ui = 0. The Hyileraas functions have Pi = 0, t i = 1 and

the separable and polarisation functions have ti = O, w i = 1, vi 2, Pi = 0 or 1. For the I'I u calculation ci+di+s i
is even. The i-iyqieraas functions have Pl = qi = O, t i = u i = 1, the separable and polarisation functions have

t i = 0, w i = 2, v i = 1. For the separable functions, three sets of values are used for Pi, qi and ui: Pi = O, qi = O,

u i = 1, Pi _ 1, qi = O, u i = 1 and p_ = 0, q_ = 1, ui = 0. The two sets of values with qi = 0 are used for the

polarisation functions. In both calculations the polarisation functions have either E_ or 1-Iu electronic Symmetry.

Discussion of Results

The Z_+ wave calculation is described elsewhere 12. We find that the low-energy (k _< 0.1 at 1) behaviour is

dominated by the polarisation functions: the Born approximation is approximately obeyed in this region although
the phase shifts fall off slightly as k approaches 0.1 at I. For higher incident energies up to k = 1.0at "i the Hyl-
leraas functions contribute most to the phase shifts, although the polarisation functions remain important. There is

good agreement with eigenphase sums for the Eu+ symmetry obtained by Danby and Tennyson 1 using the R-matrix

method with a systematic treatment of intermediate and long-range polarisation using polarised pseudostates.

Towards _e top offlae energy range the R-matrix eigenphasesums become increasingly larger than the Kohn phase

shifts; this may be due to the fact that the Kohn calculation does not allow for mixing of partial waves. Both
calculations predict that the contribution to the total scattering cross section from this symmetry is much too small

to reduce significantly the discrepancy with experiment above 2 eV.

For the 1-Iu wave, the polarisation functions again dominate low energy behaviour and the Born approximation

is followed for k < 0.1 at 1. Above k = 0.I at I the polarisation functions have less influence. The phase shifts

using separable and separable plus polarisation functions are slightly larger than the corresponding R-matrix eigen-

phase sums for the H a symmetryl. As in the case of the Eg wave 2, the inclusion of the Hylleraas functions sub-

stantially b0osts tl%_ated phase shifts. The discrepancy with the experimentai'/0t_d Cross section is
4- 4-

significantly reduced; adding together the contributions from the Zg, Z, and the two equivalent FI_ partial waves
gives totals that are comparable with the results of Hoffman et al _3 up to 4-5 eV.
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Wearecurrentlyadaptingourcalculationsto allowfor mixingof partialwavesin eachsymmetry.Thismay
improveresultsat theupperendof theenergyrangeunderconsideration.TheR-matrix results* suggest that higher
symmetries give contributions to the total cross section comparable to that of the Eu+ symmetry above k = 0.4at -1.

We are currently adapting our work to include the Fig symmetry.
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